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Abstract 27 

 28 

Cross-sectional versus longitudinal comparisons of age-related change have often revealed 29 

differing results. In the current study, we employed within-subject task-based fMRI to 30 

investigate changes in voxel-based activations and behavioral performance across the lifespan in 31 

the Reference Ability Neural Network (RANN) cohort, at both baseline and 5-year follow-up. 32 

We analyzed fMRI data from between 127 and 159 participants (20-80 years), on a battery of 33 

tests relating to each of four cognitive reference abilities (RAs). We applied a Gaussian age 34 

kernel to capture continuous change across the lifespan using a 5-year sliding window centered 35 

on each age in our participant sample, with a subsequent division into young, middle, and old 36 

age brackets. This method was applied separately to both cross-sectional approximations of 37 

change and real longitudinal changes adopting a comparative approach. We then focused on 38 

longitudinal measurements of neural change to identify regions expressing peak changes and 39 

fluctuations of sign change across our sample. Our results revealed several regions expressing  40 

divergence between cross-sectional and longitudinal measurements in each domain and age 41 

bracket; behavioral comparisons between measurements showed differences in change curves for 42 

all four domains, with processing speed displaying the steepest declines. In the longitudinal 43 

change measurement, we found lack of support for age-related frontal increases across analyses 44 

types, instead finding more posterior regions displaying peak increases in activation, particularly 45 

in the old age bracket. Our findings encourage greater focus on longitudinal measurements of 46 

age-related changes, which display appreciable differences from cross-sectional approximations. 47 

 48 
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Significance Statement 54 

 55 

Knowledge of the aging process is mostly informed by cross-sectional studies. The fewer studies 56 

that have looked at longitudinal aging trajectories display variable consensus with cross-sectional 57 

findings.  The current study provides a direct comparison between cross-sectional and 58 

longitudinal measurements of change in both neural activation and behavioral performance 59 

across several cognitive domains, providing insight into similarities versus discrepancies. 60 

Furthermore, it adopts a method of analysis used in the MRI 4D atlas literature to quantify 61 

continuous change across the lifespan through construction of neural activation “templates” that 62 

are generated from age-weighted averaging across the entire sample. Longitudinal measurements 63 

of change could then further be probed for characteristics such as peaks and change fluctuations, 64 

enabling a better understanding of true age-related changes. 65 
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1. Introduction  90 

 91 

Cognitive functions and their underlying neural substrates change across the lifespan (for 92 

a review, see Grady et al., 2012). Cross-sectional measurements of these changes often reveal a 93 

decline in behavioral performance across several domains including reductions in general 94 

processing speed (Salthouse, 1996), episodic memory (Tulving, 2002), fluid intelligence (Kievit 95 

et al., 2014), visuospatial and verbal working (Cansino et al., 2013) and long-term memory (Park 96 

et al., 2002), selective attention (Madden, 2007), and task-switching (Wasylyshyn et al., 2011), 97 

among others. Conversely, some aspects of cognition are shown to remain intact, such as 98 

semantic priming (Laver, 2009), or even increase with age, such as vocabulary (Hartshorne & 99 

Germine, 2015; Salthouse, 2014a). However, cross-sectional versus longitudinal comparisons 100 

have revealed different patterns of age-related changes; whereas the former often reports 101 

monotonic declines beginning as early as the 20s (Salthouse, 2014b), the latter shows a 102 

preservation of function until later in life, with older adults displaying an accelerated slope of 103 

decline in domains such as fluid reasoning (De Vis et al., 2018), memory (Salthouse, 2019), and 104 

global cognition (Singh-Manoux 2011). Furthermore, a recent longitudinal meta-analysis by 105 

Tucker-Drob and colleagues (2019) found support for age-related increases in shared variance of 106 

change across cognitive domains due to purported increased reliance on a common underlying 107 

factor (e.g., g-factor).  108 

At the neural level, changes in brain activation from young to old adulthood have mainly 109 

been studied cross-sectionally and have yielded variable results. Some studies have observed 110 

reduced brain activity in older compared to younger adults, which has often been interpreted as a 111 

deficiency of processing, particularly when it is linked to reduced behavioral performance 112 

(Rypma and D’Esposito, 2000; Grady et al., 1995).  Conversely, other studies have observed 113 
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age-related increases in brain activity, which has often been linked to compensatory processing 114 

mechanisms (for a review, see Eyler et al., 2011). One prominent theory endorses a posterior-115 

anterior shift with aging (PASA; Davis et al., 2008), where greater age-related activation is 116 

reported in prefrontal cortical regions and reduced activation on memory tasks (Cabeza et al., 117 

2004; Reuter-Lorenz et al., 2000; Cabeza et al., 1997). A compensatory interpretation has 118 

accompanied diverse behavioral outcomes, such as increased activation among older adults that 119 

perform comparably to their younger counterparts (Cabeza et al., 2002), when positive 120 

correlations between performance and activation selectively occur in older adults (Grady et al., 121 

2005), or even in the presence of impaired performance among older adults (Zarahn et al., 2007). 122 

Taken together, these studies have suggested that older adults typically utilize neural resources in 123 

PFC regions in order to buffer against the adverse impact of aging with the goal of 124 

aiding/maintaining performance. 125 

Compared to the wealth of cross-sectional studies comparing age groups, fewer studies 126 

have focused on the intra-individual longitudinal changes that occur with age, largely due to 127 

methodological limitations such as attrition and measurement “impurities” introduced by practice 128 

effects. A good portion of the longitudinal studies that do exist has been concentrated on the 129 

episodic memory domain. Results have varied, from memory performance remaining stable over 130 

the testing period despite functional alterations in cerebral blood flow (Beason-Held et al., 2008), 131 

to successful agers displaying higher fMRI BOLD activation in the left hippocampus and 132 

bilateral PFC (Pudas et al., 2013), to memory decline being linked to increases in PFC activation 133 

and reduction in right hippocampal volume (Pudas et al., 2018); fluctuations in hippocampal 134 

activation across testing sessions has also been linked to an increased slope of cognitive decline 135 

(O’Brien et al., 2010). Whereas longitudinal studies of behavioral changes have broached 136 
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different cognitive domains, such as processing speed, and crystallized and fluid ability (for a 137 

review, see Ghisletta & Lindenberger, 2004), and even their link to protective factors in 138 

buffering decline (e.g., Then et al., 2015; Tucker-Drob et al., 2009; Manly et al., 2003), fewer 139 

studies have comprehensively addressed neural changes that accompany healthy aging across 140 

different domains.  141 

In the present study, we utilize longitudinal data from the Reference Ability Neural 142 

Network (RANN) study to derive both cross-sectional approximations of change across the 143 

lifespan as well as actual longitudinal measurements of change over a 5-year span. To 144 

characterize age-related change, we applied a Gaussian kernel across the ages in our sample to 145 

generate both 1.) weighted neural activation maps of change as well as 2.) weighted behavioral 146 

scores across a sliding 5-year window.  This allowed us to generate “templates” of change, 147 

which is a concept borrowed from the MRI 4D atlas literature, where attention has been given to 148 

chronicling dynamic lifespan changes (Serag et al., 2012; Ericsson et al., 2008). This allowed us 149 

to also midlife changes, which has only recently garnered attention in the aging literature (e.g., 150 

Hughes et al., 2018; Pudas et al., 2014). We refrained from adopting a statistical approach such 151 

as mixed effects modeling because our intention here was to avoid constraining our analyses to 152 

model-based assumptions and instead explore trends in the data in a more phenomenological 153 

vein. Given the novelty of our approach and application across multiple domains in a 154 

longitudinal data set, we refrained from making strong a priori claims. Instead, we merely 155 

hypothesize that several regions will show insightful discrepancies between real longitudinal 156 

measurements of change and cross-sectional approximations of such change, and that areas of 157 

maximal change across time and space will differ by domain. 158 

 159 
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2. Methods 160 

2.1. Participants 161 

A sample size of between 127 and 159 participants, depending on the domain, was included in 162 

the analysis (see Table 1 for a list of participant demographics). As we wanted to maximize 163 

participant inclusion, we did not restrict our sample to only those participants who completed all 164 

12 tasks of our design; we treated each domain separately, which accounted for the varying 165 

sample size.  A participant was only required to have data for at least one task in a given domain. 166 

All participants were native English speaking, right-handed (Oldfield Edinburgh Handedness 167 

Inventory; Oldfield, 1971) adults who were tested at two time points baseline and 5-year 168 

follow-up with an age range of 20-80 years at baseline. Participants were recruited for the 169 

study via random market advertising. All participants were screened for severe medical or 170 

psychiatric conditions, head injury, hearing or vision impairments, and other impediments that 171 

could interfere with MRI acquisition. Older participants were screened for dementia and mild 172 

cognitive impairment using the Dementia Rating Scale (DRS; Mattis, 1988) at both time points. 173 

All participants had less than 30% of their data "scrubbed," explained in the fMRI Data 174 

Preprocessing section.  175 

------------ 176 

Table 1 here 177 

------------ 178 

 179 

2.2. Procedure 180 

The experiment was designed to acquire fMRI data from participants as they performed 12 181 

computerized cognitive tasks in scanner, each relating to one of four reference abilities (RA; 182 
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Stern et al., 2014), at two time points (baseline and 5-year follow-up). At each testing time point, 183 

participants completed the battery of tasks over two sessions, each lasting for approximately 2 184 

hours and containing six of the 12 tasks belonging to two of the four RAs. Tasks within each 185 

reference domain were presented in a fixed order; the order of the two sessions was 186 

counterbalanced across participants. The order of administration at follow-up was completely 187 

randomized and did not depend on the order of administration at baseline. Tasks presented at 188 

follow-up were identical to those presented at baseline. As previously mentioned, we treated 189 

each domain separately and thus participants were only required to have performed at least one 190 

of the tasks in a given domain to be included in the analysis. This was done to maximize 191 

participant inclusion considering the difficulty of procuring complete sets of longitudinal data. 192 

Therefore, the number of participants in each domain varies. To ensure that there was no 193 

difference in the number of tasks completed as a function of age, we pooled together participants 194 

across all domains (184 participants in total) and compared the total number of tasks completed 195 

between age brackets, for both baseline and follow-up.  One-way ANOVA revealed no 196 

significant difference between age brackets, neither at baseline (F(1,182) = 1.03, p = .31) nor 197 

follow-up (F(1,182) = 0.826, p = .36). Mean tasks completed (baseline/follow-up) were similar 198 

across young (11.69/10.9), middle (11.62/11.08), and old (11.84/10.6) age brackets. 199 

 200 

Prior to each scanning session, participants were familiarized with the six tasks relevant to the 201 

current session during an out-of-scanner training session, which was performed on a laptop 202 

computer. The mode of response for all but one task was keyboard button press; the picture-203 

naming task used an oral response. Training sessions were self-paced such that breaks could be 204 

taken when needed and participants were given the option of repeating the training session if 205 
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desired. Assessment of task comprehension was made based on the participant’s subjective 206 

comfort with the task and the informed judgment of a trained research assistant. For the scanning 207 

portion, breaks were also permitted upon request and could be taken between the completion of 208 

the cognitive tasks and the beginning of the structural scans; however, breaks were rarely 209 

requested.  In a separate session, participants also completed a neuropsychological battery; 210 

results from this battery will not be addressed in the current paper.  211 

 212 

2.2.1. Stimulus presentation 213 

Stimuli were back-projected onto an LCD monitor positioned at the end of the scanner bore. 214 

Participants viewed the screen via a tilted mirror system, which was mounted on the head coil. 215 

When needed, vision was corrected-to-normal using MR compatible glasses (manufactured by 216 

SafeVision, LLC. Webster Groves, MO). Responses were made on a LUMItouch response 217 

system (Photon Control Company). E-Prime v2.08, operating on PC platform, was used for 218 

stimulus delivery and data collection. Task onset was electronically synchronized with the MRI 219 

acquisition device. 220 

 221 

2.2.2. Reference Ability (RA) In-Scanner Tasks 222 

Twelve cognitive tasks, each belonging to one of four reference domains, were presented in-223 

scanner. A brief description of each task, divided by domain, is provided below (for a more 224 

thorough description, see Stern et al., 2014). For all tasks, with the exception of picture naming, 225 

responses were made via button press; picture naming, instead, required a vocal response. For 226 

episodic memory, fluid reasoning, and vocabulary domains, accuracy- measured as the 227 

proportion of correct trials to total trials included- was analyzed for each task. For the processing 228 
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speed domain, RT data was analyzed for each task. For the remainder of the document, an 229 

abbreviated version for each reference ability will sometimes be used: episodic memory− MEM, 230 

fluid reasoning− FLUID, processing speed− SPEED, and vocabulary− VOCAB. We also will 231 

interchangeably use the terms “domain” and “reference ability” to refer to our RAs.   232 

2.2.1.1. Episodic Memory (MEM) 233 

For all three episodic memory tasks, both study and test phases were scanned together and 234 

cannot be separated in the analysis. The percentage of correct trials served as the behavioral 235 

variable of analysis.  The tasks were as follows: 236 

-Logical Memory: Participants were presented with a story scenario on the computer 237 

screen. They were required to read the story and answer detailed multiple-choice 238 

questions regarding the content, choosing one of four possible answers. 239 

-Word Order Recognition: In the study phase, participants were presented with a list of 240 

12 words, one word at a time, on the computer screen and asked to remember the order of 241 

word presentation. In the test phase, participants were presented with a probe word at the 242 

top of the screen and four choice words below and asked to indicate which of the four 243 

choice words was presented subsequent to the probe word.   244 

-Paired Associates: In the study phase, participants were presented with a list of 12 245 

word-pairs, one pair at a time, on the computer screen and asked to remember the word 246 

pairings. In the test phase, participants were presented with a probe word and four choice 247 

words below and asked to select which word was previously paired with the probe word.  248 

 249 

2.2.1.2. Fluid Reasoning (FLUID) 250 
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The percentage of correct trials served as the behavioral variable of analysis.  The tasks were as 251 

follows: 252 

-Matrix Reasoning (adapted from Raven (1962)): Participants were presented with a 253 

matrix divided into nine cells (3x3) that reflected an unspecified rule, with the bottom 254 

right cell remaining empty. Participants had to decide which of eight figure choices, 255 

presented below the matrix, best completes the sequence pattern.   256 

-Letter Sets (Ekstrom et al., 1976): Participants were presented with five sets of letters, 257 

with four of them expressing a common rule (e.g., contains no vowels). Participants were 258 

asked to infer the rule and identify the letter set that deviates from it.  259 

-Paper Folding (Ekstrom et al., 1976): Participants were presented with a paper folded 260 

in a specific sequence with a set of holes punched through it. They had to decide which of 261 

six options reflected the configuration of the holes on the paper when unfolded.  262 

 263 

2.2.1.3. Processing Speed (SPEED) 264 

Reaction time served as the behavioral variable of analysis.  The tasks were as follows: 265 

-Digit Symbol (adapted from Salthouse, 1998): Participants were presented with a code 266 

key at the top of the screen consisting of nine number (values ranging from one to nine)-267 

symbol pairs. Below the code key a single number-symbol pair was presented and 268 

participants were asked to indicate if the pair was present in the code key.  269 

-Letter Comparison (Salthouse and Babcock, 1991): Participants were presented with 270 

two strings of letters alongside one another, each containing three to five letters. They 271 

were asked to indicate whether the strings were the same or different.  272 
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-Pattern Comparison (Salthouse and Babcock, 1991): Participants were presented with 273 

two figures alongside one another, each consisting of connected lines that formed 274 

different configurations. They were asked to indicate whether the figures were the same 275 

or different.  276 

 277 

2.2.1.4. Vocabulary (VOCAB) 278 

The percentage of correct trials served as the behavioral variable of analysis.  The tasks were as 279 

follows: 280 

-Antonyms (Salthouse & Kersten, 1993): Participants were presented with a probe 281 

word in capital letters at the top of the screen. Below the probe word, four choices of 282 

words were listed. They were asked to indicate which word possessed a meaning that was 283 

most dissimilar to that of the probe.  284 

-Picture Naming: Participants were presented with single images and asked to identify 285 

the picture by vocal response. Images were selected from the WJ-R Psycho-Educational 286 

battery (Salthouse, 1998; Woodcock, Johnson, & Mather, 1989). 287 

-Synonyms (Salthouse & Kersten, 1993): Participants were presented with a probe word 288 

in capital letters at the top of the screen. Below the probe word, four choices of words 289 

were listed. They were asked to indicate which word possessed a meaning that was most 290 

similar to that of the probe.  291 

 292 

2.2.3. fMRI Data Acquisition  293 

Image acquisition was performed using a 3T Philips Achieva Magnet. Participants performed 12 294 

fMRI tasks over the course of two, 2-hour MR imaging sessions; the same procedure was 295 
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followed at both baseline and again at 5-year follow-up. At the onset of each session, a scout T1-296 

weighted image was acquired in order to determine the participant’s position. A T1-weighted 297 

MPRAGE scan was performed to capture participants’ brain structure, with the following 298 

parameters: TE/TR of 3/6.5 ms, flip angle of 8°, in-plane resolution of 256 × 256 voxels, field of 299 

view of 25.4 × 25.4 cm, and 165–180 slices in the axial direction with a slice-thickness/gap of 300 

1/0 mm. All scans used a 240 mm field of view. For the EPI acquisition, the following 301 

parameters were used: TE/TR of 20/2000 ms, flip angle of 72°, in-plane resolution of 112 × 112 302 

voxels, and a slice thickness/gap of 3/0 mm. FLAIR, DTI, ASL, and a resting BOLD (7 min) 303 

scan were additionally acquired; however, these data are not considered in the current paper. A 304 

neuroradiologist examined each participant’s scan for abnormality and any significant findings 305 

were reported to the participant's primary care physician. 306 

 307 

2.2.4. fMRI Data Preprocessing 308 

FMRIB Software Library v5.0 (FSL) and custom-written Python code was used to preprocess the 309 

imaging data.  The preprocessing pipeline for each participant’s task-related scan was performed 310 

using FSL (Smith et al., 2004) with the following steps: 1.) generation of within-participant 311 

histograms for noise detection (FEAT); 2.) spatial realignment to the middle volume 312 

(MCFLIRT); 3.) slice-timing correction; 4.) creation of brain mask from the first volume; 5.) 313 

high-pass filtering (T = 128s); 6.) pre-whitening for attenuation of autocorrelation; 7.) General-314 

Linear-Model (GLM) estimation with motion-related nuisance regressors and convolved double-315 

gamma hemodynamic response function; 8.) non-linear registration of functional to structural 316 

brain images with normalization into MNI space (FNIRT).  317 

 318 
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2.2.5. Time-series modeling 319 

For each participant, general linear models were created, consisting of block-based time-series 320 

for fluid reasoning, speed and vocabulary tasks, and event-related models for the memory tasks.  321 

For the memory tasks, while both the encoding, retention and retrieval phases were imaged, only 322 

the retrieval phase was analyzed.  A single regressor was used to compare task performance to an 323 

intrinsic baseline, which was defined in one of two ways depending on the analysis.  For block 324 

design task models, a boxcar function denoting the onset and offset of each task block was used.  325 

The regressor was obtained by convolving this boxcar function with the canonical hemodynamic 326 

response function (HRF). The intrinsic baseline was defined as the interval between task blocks 327 

during which no stimuli were presented on the screen.  For event-related task models, the 328 

intrinsic baseline was modeled as the combination of all non-task periods. Each stimulus 329 

presentation was modeled from the onset of the stimulus to the response, using correct trials 330 

only, with the regressor obtained by convolving the stimulus presentation with the canonical 331 

HRF.  For each participant’s 12 tasks, a standard GLM was run on each scan, utilizing the 332 

appropriate regressor, in order to generate a parameter estimate (beta) map. A gray matter mask 333 

was applied to the data to include only those voxels with a mean gray matter probability of 50% 334 

or higher across all participants. This reduced the number of active voxels to 24,055. Analyses 335 

were performed on this masked subset. 336 

 337 

2.3. Analytical Approach 338 

Data were analyzed using custom-written MATLAB
®

 codes (Mathworks, Natick, 339 

Massachussets, USA). For between-task comparison in behavioral performance, all scores were 340 

standardized via z-transformation, with the mean and standard deviation calculated at the first 341 
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visit across all participants for each task separately. For speed tasks, z-score values were sign-342 

inverted to correspond with accuracy scores from other task domains, such that higher scores 343 

always reflect better performance. For adequate comparisons between testing time points, Z-344 

score transformations of both baseline and follow-up data were made based on the mean and 345 

standard deviations calculated at baseline. For analyses of all behavioral and voxel-wise fMRI 346 

data at both baseline and follow-up, behavioral performance and activation maps, respectively, 347 

for the three tasks pertaining to a given domain were averaged. That is, for each participant, a 348 

single activation map per domain were first created by averaging across the tasks pertaining to 349 

each RANN domain.  350 

 351 

2.4. Age kernel 352 

We were interested in ascertaining how domain-related activation changes across the lifespan, 353 

comparing cross-sectional approximations of change at baseline to real changes derived from the 354 

longitudinal data. We first explain how baseline data were analyzed, followed by longitudinal 355 

calculations of change.  356 

 357 

We employed an age kernel (explained in greater detail in the section to follow) to enable a finer 358 

grained consideration of change as a function of the age of the participants: the age kernel. The 359 

kernel creates a weighted average, across all participants, of a measured phenomenon (i.e., neural 360 

activation or behavioral performance), enabling some age specificity by assigning greater weight 361 

to participants whose age falls closer to a particular target age.  This is a compromise between 362 

averaging across all participants (no age specificity, but less statistical noise) and considering 363 

single participants only (great age specificity, but more statistical noise). As a first measurement 364 
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of change in task-related activation, we applied our kernel across all voxels to generate change 365 

curves. We then followed this up with an application of the kernel to subsets of voxels selected 366 

from ROIs centered on each voxel in our mask.  367 

 368 

2.4.1. Neural age-weighted maps of baseline data 369 

2.4.1.1. Generation of age-weighted activation (beta) maps 370 

To investigate cross-sectional approximations of change across age in the baseline data, we 371 

utilized a Gaussian smoothing function to create activation maps at one-year age increments by 372 

integrating across all participant’s age-weighted activation maps. The aim was to utilize each 373 

participant’s domain activation map, by weighting its signal, to generate a mean domain 374 

activation map for each target age. The weight, or the degree to which a participant’s signal 375 

contributed to the mean signal, depended on the participant’s age with respect to the target age.  376 

For a given domain and target age (t), the procedure was as follows: 377 

1.) We applied a Gaussian kernel to age, centered on a target age (t), in order to obtain a 378 

weight (w) for each participant’s age (ti).  Weights were derived according to the 379 

Gaussian function, defined as 380 

𝑤(𝑡𝑖 , 𝑡)  =  
1

𝜎√2𝜋
𝑒

−(𝑡𝑖 − 𝑡)2

2𝜎2  

 381 

where the width, or standard deviation (σ), of the kernel is a somewhat subjective 382 

parameter determined by the size and distribution of the dataset; lower values of σ weigh 383 

the tails of the age distribution less, leading to a sharp localization around the target age, 384 

whereas higher values create a more dispersed “blunt” distributional spread. As we had a 385 

relatively large sample size, we followed the choice, σ = 4, of Ericsson and colleagues 386 
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(2008) who, in their generation of a 4D structural atlas, found that good results could be 387 

obtained using 3 < σ < 5. Good results in their analysis were defined as not too heavily 388 

weighing individual samples yet not smoothing out over age-dependent variation, either 389 

of which could occur with too small or too large values of sigma, respectively. To assess 390 

the reliability of our choice in sigma given the range of this window, we also performed 391 

the kernel regression using a σ of 3 and 5. Similar results were obtained across these σ 392 

values. As a reminder, the kernel was centered on each age in our dataset, ranging from 393 

20 to 80 years, with each age serving as a target age, and weights assigned to all 394 

participant’s ages accordingly. 395 

2.)  After obtaining age weights for a target age (t), we multiplied each participant’s domain 396 

activation map by their age-defined weight to create a weighted map per participant. 397 

3.) We then summed these weighted maps across participants and divided by the sum of the 398 

weights to create a single mean activation map for the target age. An example of the 399 

kernel centered at target age (t=35 years old) can be found in figure 1. 400 

4.) The result was a weighted activation map (24055 voxels) per year of life (61 time points: 401 

20-80 years) for each of the four domains. 402 

  403 

-------------- 404 

Fig. 1 here 405 

-------------- 406 

 407 

2.4.1.2. Activation map change curves estimated from cross-sectional data at baseline 408 
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We were interested in quantifying the change in age-weighted activation maps across time by 409 

deriving a single change in activation (value per 5-year sliding window (e.g., 20-25, 21-26, 410 

etc). To do so, we subtracted the activation map at time (t) from the map at time (t + 5). Given 411 

the age span of 20-80 years at baseline, change maps could only be calculated up until 75 – 80 412 

years, yielding 56 change maps per domain. We then took the mean across all voxels. This 413 

resulted in a 56 x 1 vector of values per domain, with positive values reflecting 5-year age-414 

related increases in activation and negative values reflecting 5-year age-related decreases in 415 

activation.  416 

 417 

2.4.1.3. Age-weighted activation ROIs and change curves estimated from cross-sectional 418 

data at baseline 419 

We also wanted to obtain a more refined and precise measure of age-related change across the 420 

brain. To do so, rather than generating age-weighted maps per year of life by summing across all 421 

participants age-weighted activation maps (24055 weighted voxels), we generated 24055 ROI 422 

spheres, centered on each voxel, and age-weighted the subset of voxels comprised by each ROI. 423 

ROIs were generated by centering a 12mm radius sphere on each voxel in our gray matter mask 424 

and selecting those voxels that fell within this sphere. Due to the irregularity of the gray matter 425 

mask, voxel count by ROI varied (median: 193 voxels; range: 16-428 voxels).  Per ROI, we first 426 

obtained the index of voxels corresponding to a given ROI and selected only those voxels from 427 

participants’ domain activation maps. Next, for each target age, we multiplied each participant’s 428 

voxel activation values by their age-defined weight (corresponding to step 2 above) and then 429 

summed across all participants and divided by the sum of the weights (corresponding to step 3 430 

above); this yielded a weighted ROI (between 16 and 428 voxels) per year of life (61 time 431 
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points: 20-80 years) for each of the domains (4). To create the change curves, for each ROI of 432 

each domain, we subtracted the ROI voxel activation values at time (t) from the map at time (t + 433 

5) and averaged across all voxels comprising that ROI. This rendered a 56 x 1 vector of 434 

values per ROI (24055), per domain (4).   435 

 436 

2.4.2. Neural age-weighted change maps of longitudinal data 437 

2.4.2.1. Generation of age-weighted activation change maps 438 

To generate longitudinal change maps and their subsequent change curves, we inverted the 439 

process described above: instead of averaging across participants with the age-kernel and then 440 

subtracting between different target ages, we now subtracted the activation maps at time (t) from 441 

time (t + 5) for each participant first, and then applied the kernel to create age-weighted change 442 

maps at each 5-year sliding window.  443 

For a given domain and target age (t), the procedure was as follows: 444 

1. We first calculated the difference between the activation map at time (t) and the map at 445 

time (t + 5) within each participant. 446 

2. Next, for each target age “interval” (e.g., 20-25 years), we created age-weighted change 447 

maps by multiplying each participant’s domain activation change map by their age-448 

defined weight to create a weighted change map per participant. The weight assigned 449 

corresponded to their age at baseline.   450 

3. As before, we then summed these weighted change maps across participants and divided 451 

by the sum of the weights to create a single mean activation difference map for the target 452 

age interval.  453 
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4. The result was a weighted activation change map (24055 voxels) per sliding 5-year 454 

window of life (61 time points: 20-80 years) for each of the domains (4), centered on age 455 

at baseline. However, in order to render the longitudinal results comparable to the 456 

baseline results, we only considered the change maps between 20 and 75 years (the latter 457 

corresponding to the age interval of 75-80 years), resulting in 56 time points.  458 

 459 

2.4.2.2. Activation map change curves of longitudinal measurements 460 

To generate change curves, we again took the mean across all voxels. As before, this resulted in 461 

a 56 x 1 vector of values per domain. 462 

 463 

2.4.2.3. Age-weighted activation ROIs and change curves of longitudinal measurements 464 

We followed a procedure similar to the one described for the baseline approximation only 465 

inverting the weighting and subtraction steps. For the longitudinal differences, for each target 466 

age, per ROI, per domain, we first subtracted a participant’s ROI at baseline time (t) from that at 467 

follow-up time (t + 5). We then age-weighted these difference values and averaged across all 468 

voxels within that ROI, again generating a 56 x 1 vector of values per ROI (24055), per 469 

domain (4).  470 

 471 

2.4.3. Age-weighted behavioral performance scores 472 

2.4.3.1. Baseline approximation change curves 473 

We applied the same Gaussian age kernel procedure as described above to behavioral 474 

performance to additionally observe how it changes across the lifespan. The same weights were 475 

generated for each target age, only this time, instead of multiplying the age-defined weight by 476 
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the participant’s activation map, we multiplied it by the participant’s performance. As before, for 477 

each target age nested within each domain, the age-weighted performance scores were summed 478 

across all participants and divided by the sum of the weights. This yielded a single behavioral 479 

value for each target age (61 age points: 20-80 years) for each of the domains (4). As before, we 480 

were interested in quantifying the change in age-weighted behavioral performance across age by 481 

deriving a single change in performance (Pvalue between each year. For each domain, we 482 

subtracted the weighted performance score at time (t) from the score at time (t + 5), yielding a 56 483 

x 1 vector of Pvalues per domain.  484 

 485 

2.4.3.1. Longitudinal change curves 486 

Longitudinal change scores were calculated by first subtracting each participant’s performance at 487 

time (t) from their performance at follow-up time (t + 5). For each domain, we next calculated 488 

the performance change score per target age by multiplying each of the participant’s change 489 

values by the weight assigned to their age at baseline with respect to the given target age. We 490 

then summed across all participants per target age, which yielded a 61 x 1 vector of Pvalues 491 

per domain. To render the longitudinal results comparable to the baseline results, we only 492 

considered the change values between 20 and 75 years (the latter corresponding to the age 493 

interval of 75-80 years), resulting in 56 time points.  494 

 495 

2.4.4. Comparisons between baseline approximations and longitudinal neural change  496 

2.4.4.1. Change curves per ROI divided by age bracket 497 

We next wanted to compare baseline to longitudinal measurements of change between each ROI 498 

to see where the differences curves were most similar and most different to one another; that is, 499 
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where baseline approximations adequately capture true changes and where there is high 500 

discrepancy between the two.  To do this, we divided curves into age brackets comprising young 501 

age, middle age, and old age. Such a division was motivated by the idea that middle adulthood is 502 

often an overlooked time span in the aging literature, with comparisons typically focusing on 503 

extreme ends of the age distribution, and we wanted to take advantage of the expanse of our 504 

dataset.  We defined young age as 20 to 40 years, which reflects the changes in activation over 505 

the period of 20/25 to 40/45 years, middle age as 41 to 60 years (covering the change interval of 506 

41/46 to 60/65 years), and old age as 61 to 75 years (the change interval of 61/66 to 75/80 years). 507 

Our rationale for such age boundaries was determined by a few factors. We specifically defined 508 

older age as the period comprising 60-80 years based on prior literature (see Reuter-Lorenz & 509 

Park, 2010). As for the young and middle age brackets, as previously mentioned, given the 510 

limited number of studies investigating midlife changes, there is not a stable precedence to 511 

follow that delineates the transition from young to middle adulthood. Therefore, we relied on the 512 

age distribution of our sample population and the few examples from the literature explicitly 513 

testing a middle age sample. Placing a boundary at 40 years of age allowed us to create rather 514 

evenly-distributed tertile intervals, with the addition of having some founding in the literature 515 

(see Ankudowich et al. 2016). Next, for each ROI (24055) and domain (4), we compared 516 

segments of the two change curves comprising each of the three age brackets separately by 517 

computing the Mean Absolute Error (MAE), which measures the average error between paired 518 

observations expressing the same phenomenon, irrespective of the direction. It is calculated by 519 

simply subtracting one curve from the other and taking the mean of the absolute value of the 520 

differences. This rendered a map (24055 ROI values) of MAE values per age bracket (3), per 521 
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domain (4). To assess areas of high similarity or difference, we ultimately considered only those 522 

values falling beyond the 2.5 or 97.5 percentiles of the distribution, respectively.  523 

 524 

2.4.5. Longitudinal change curves per ROI 525 

As the longitudinal change curves reflect the true changes that occur over a 5-year age span, we 526 

chose to focus the rest of the analyses on ROI regions of maximum signed change in the 527 

longitudinal measurement only. 528 

 529 

2.4.5.1. Integrated change by age bracket 530 

We were interested in the areas exhibiting maximum change, in terms of both increases and 531 

decreases in activation, across the lifespan. We therefore calculated the integral of change values 532 

on segments of the change curves comprising each of the three age brackets, separately, per ROI 533 

(24055) and domain (4). For each age bracket segment of the change curve, we first divided into 534 

negative and positive change values in order to distinguish between cumulative increases versus 535 

decreases in activation. We then calculated the integral, or the area under the curve, for change 536 

values of each sign. The integral method that we used was trapezoidal, which approximates the 537 

area of the region between two units, or as in our case between two age intervals (e.g., 21/26 to 538 

22/27), for each of the partitioned age intervals by essentially treating the difference between 539 

each age interval as a trapezoid and calculating its area. The integral over the entire age-540 

bracketed segment is achieved by summing across the areas of each age interval. In this way, we 541 

obtained two total change values, reflecting positive or negative change, for each age bracket. As 542 

this procedure was performed per ROI and domain, we thus obtained maps (24055 ROI values) 543 

for each domain (4), each age bracket (3), and each sign of change (2). As before, we were 544 
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mainly interested in establishing which areas displayed extreme activation increases or decreases 545 

in each age bracket. Thus, we considered only those values that fell beyond the 97.5 percentile 546 

upper bound of increases in activation (positive) and beyond the 2.5 percentile lower bound of 547 

decreases in activation (negative).  548 

 549 

2.4.5.2. Peak change across the lifespan 550 

We also wished to establish the age bracket in which a peak change across the lifespan occurred 551 

for each of the ROI change curves in each domain. For each ROI in each domain, we located 552 

when a peak positive maximum and a peak negative change occurred in the change curve. We 553 

then color coded by age bracket and generated peak maps (24055 ROI peak values) per domain 554 

(4) that reflected the age bracket assignment.  555 

 556 

2.4.5.3. Age-dependence variability of longitudinal change  557 

Lastly, we measured the variability in the direction of change in the longitudinal measurements 558 

across all domains, separately for each age bracket. That is, we wished to see which voxels 559 

fluctuated in the sign of change across all four domains. For each age bracket, we indexed when 560 

a voxel displayed at least one change of sign (i.e., zero-crossing) in each domain and mapped 561 

those voxels displaying overlap across all domains. For example, imagine that a voxel shows at 562 

least one zero-crossing (i.e., sign fluctuation) in the young age bracket in each of the 4 domains. 563 

This voxel would be indexed and shown as “consistently variable change” according to our 564 

definition.  565 

 566 

3. Results 567 
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3.1. Neural change curves averaged across voxels 568 

We first present the change curves computed by taking the average across all voxels from the 569 

change maps, for both the baseline approximation and longitudinal measurements (see upper 570 

panel of Figure 2). We calculated the similarity between baseline and longitudinal change curves 571 

per domain using MAE, where lower values indicate greater similarity. According to MAE, the 572 

FLUID domain displayed the highest similarity between baseline and longitudinal measurements 573 

(MAE = 1.52) whereas the MEM domain displayed the highest difference (MAE = 3.82), 574 

followed by SPEED (MAE = 1.82) and VOCAB (MAE = 1.72). However, as one can appreciate 575 

from the figure, there do not appear to be radical differences between baseline and longitudinal 576 

measurements, neither in shape nor magnitude, with peaks occurring at similar points for each 577 

across all domains.  578 

 579 

3.2. Behavioral performance change curves 580 

We next looked at the performance change curves for both baseline approximations and 581 

longitudinal measurements (see lower panel of Figure 2). We again calculated MAE for the 582 

change curve comparisons per domain. According to MAE, the SPEED domain displayed the 583 

highest similarity between baseline approximations and longitudinal measurements (MAE = 584 

0.09) whereas the FLUID domain displayed the highest difference (MAE = 0.14), followed by 585 

the VOCAB domain (MAE = 0.13) and finally the MEM domain (MAE = 0.11). Interestingly, 586 

whereas the baseline approximations of change for the VOCAB domain indicated troughs of 587 

performance decreases, notably in the change from around 58 to 63 years of age (i.e., represented 588 

as baseline age 58 years on the graph), the longitudinal measurements always showed increases 589 

in performance across the lifespan. Overall, whereas baseline approximations tended to display 590 
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consistent declines in performance over time, longitudinal measurements displayed a more 591 

variable pattern of both increases and decreases, with only SPEED showing a rather constant 592 

increase in the slope of decline.  593 

--------------- 594 

Fig. 2 here 595 

--------------- 596 

 597 

3.3. Baseline approximations compared to longitudinal neural change 598 

3.3.1. Change curves per ROI divided by age bracket 599 

Next, we compared the baseline approximation to the longitudinal change curves for each ROI, 600 

centered on each voxel in our gray matter mask, across the entire brain, for each domain. These 601 

comparisons were made by dividing the curves into segmented age brackets that approximately 602 

represented tertiles in the age distribution at baseline and calculating MAE on these segments.  603 

We were interested in which brain areas displayed maximum similarity and differences between 604 

the two measurements, defined as <2.5 or >97.5 percentiles, respectively. An example of the 605 

map of these regions, one for each domain, can be found in Figure 3. We also list the top three 606 

ROIs expressing the greatest difference (see Table 2) and the top three ROIs expressing the 607 

greatest similarity (see Table 3) for each age bracket in each domain. As can be observed from 608 

the figure, MAE provided a good approximation of similarity and difference for each of the 609 

domains presented. Among the differences, those greatest across all domains were observed in 610 

the right hemisphere for the old age bracket. Overall, it appeared that for the young and middle 611 

age brackets, the greatest differences for all domains were expressed in frontal regions, often 612 

left-lateralized, including the superior and middle frontal gyri. The one exception was for the 613 

VOCAB domain, where the middle age bracket displayed highest differences in the calcarine 614 
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fissure, middle occipital lobe, and the cerebellum crus 1. Conversely, the greatest differences 615 

between baseline and longitudinal measurements for the old age bracket were observed in 616 

posterior regions, such as the right inferior/middle occipital cortex, lingual gyrus, and cerebellum 617 

crus 6, and the bilateral cerebellum crus 1. Only for the SPEED domain, the orbital middle 618 

frontal gyrus was among the regions that expressed maximum difference in the old age bracket. 619 

There appeared to be less uniformity across domains among the regions expressing similarities 620 

between both measurements. However, interestingly, whereas posterior regions such as the 621 

inferior/middle occipital cortex displayed the greatest differences between measurements for the 622 

VOCAB domain in the old age bracket, anterior regions such as the bilateral superior frontal 623 

gyrus consistently showed the greatest similarity. Additionally, whereas regions expressing both 624 

maximum similarity and difference in the old age bracket were typically right-lateralized, only 625 

the SPEED domain displayed left-lateralized similarity between measurements, including the 626 

inferior parietal lobule (as can be observed in the bottom left panel of Figure 3, this similarity 627 

was a common decrease in activation). Furthermore, more parietal regions such as the 628 

supramarginal, postcentral, and inferior parietal gyri and precuneus displayed similarity, along 629 

with limbic structures such as the caudate, putamen, and hippocampus. 630 

 631 

---------------- 632 

Fig. 3 here 633 

---------------- 634 

---------------- 635 

Table 2 here 636 

---------------- 637 
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---------------- 638 

Table 3 here 639 

---------------- 640 

 641 

 642 

3.4. Longitudinal changes across the lifespan 643 

3.4.1. Integrated change by age bracket  644 

We wanted to establish which areas exhibited maximum change, in terms of both increases and 645 

decreases in activation, focusing now only on the longitudinal measurements. This was achieved 646 

by calculating the integral of both negative and positive change values in each age bracket of 647 

each ROI and domain. We then selected the extreme ends of the distribution, or values >97.5 648 

percentile and <2.5 percentile (see Figure 4; for all four domains, both the maximum negative 649 

and positive values were highest for the young age bracket, which decided the extreme ends of 650 

the color bars). The top three areas expressing maximum positive change and maximum negative 651 

change, for each age bracket and domain, are listed in Tables 4 and 5, respectively. Overall, there 652 

were more cumulative positive changes than negative changes for the FLUID domain, as can be 653 

observed from the color bar of the graphs; this stood in contrast to MEM, for which change was 654 

overall more negative. For the MEM domain, the anterior cingulate expressed maximum 655 

increases in activation in both the young and middle age brackets but not in the old age bracket. 656 

In a similar vein, the left superior frontal gyrus, which expressed maximum decreases in 657 

activation in both the young and middle age brackets, was not present for the old age bracket.  658 

For the FLUID domain, the right cerebellum was among the regions expressing maximum 659 

activation increases in the young age bracket, but were not among the regions of highest positive 660 

change in middle and old age; a similar finding was observed for the left medial superior frontal 661 



 

 28 

gyrus. Conversely, the bilateral postcentral and rolandic operculum were among the regions of 662 

highest positive change only for the old age bracket. For the SPEED domain, similar to the MEM 663 

domain, the anterior cingulate cortex expressed maximum increases in activation in the young 664 

and middle age brackets but to a reduced extent in the old age bracket. Instead, the bilateral 665 

cerebellum 3-6 displayed maximum increases in activation in the old age bracket, which was not 666 

among the top regions expressing change in the young and middle age brackets. Furthermore, 667 

maximum decreases in activation in the medial/superior frontal gyrus, which were present in the 668 

young and middle age brackets, were present to a lesser degree in the old age bracket, the latter 669 

expressing maximum decreases in more left-lateralized inferior frontal operculum.  For the 670 

VOCAB domain, the most salient finding was the stability in expression of maximum change 671 

across all age brackets, with maximum positive changes consistently occurring in posterior 672 

regions such as the inferior/middle occipital lobe, and maximum negative changes occurring in 673 

frontal regions such as the inferior/middle frontal gyrus.  674 

 675 

------------- 676 

 677 

Fig. 4 here 678 

 679 

------------- 680 

 681 

------------ 682 

 683 

Table 4 here 684 

 685 

------------ 686 

 687 

 688 

------------ 689 

 690 

Table 5 here 691 

 692 

------------ 693 

 694 
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 695 

 696 

3.4.2. Peak longitudinal change across the lifespan 697 

We wished to establish in which age bracket a peak change occurred when considering the entire 698 

change curve. Therefore, for each ROI in a given domain, we indexed the maximum value of the 699 

absolute value of the change curve, and assigned it a color label based on the age bracket in 700 

which it occurred and the original sign of the peak (negative or positive; see Figure 5). For the 701 

MEM domain, it was clear that the bilateral (para)hippocampus and vermis 1-3 displayed the 702 

highest increases in activation for the older age bracket, whereas areas such as bilateral thalamus, 703 

anterior cingulate, vermis 4-6 and middle occipital lobe displayed peak decreases in activation. 704 

However, it appeared that overall, the maximum changes were occurring for the middle age 705 

bracket, in terms of both peak increases and decreases in activation, with a slight left 706 

hemispheric bias in the medial/superior temporal lobe and cerebellum crus 4 and 5 towards peak 707 

increases in activation; additionally, the precuneus, cuneus, and supplementary motor area 708 

displayed peak increases whereas the bilateral cerebellum crus 6, insula, and inferior 709 

frontal gyrus (pars orbitalis) and right superior temporal pole displayed peak decreases. For the 710 

FLUID domain, as could be expected from the integrated change analysis, the maximum changes 711 

were mainly positive peaks, with broad areas of the bilateral temporal lobe and midline 712 

extending from the cuneus to the anterior cingulate expressing positive peaks in middle age and 713 

young, respectively. Positive peaks were seen in the left fusiform, bilateral cerebellum, bilateral 714 

(para)hippocampus, right supramarginal gyrus, midcingulate, and bilateral putamen. Negative 715 

peaks in middle age were mainly observed bilaterally along the rostro-caudal axis of the 716 

prefrontal cortex. For the SPEED domain, greater peak decreases in activation were observed for 717 

young age bracket. Interestingly, some of these peaks were located in the right inferior parietal 718 
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lobule and angular gyrus, areas that, along with their left counterparts, have been implicated in 719 

attention and action guidance (Singh-Curry & Husain, 2009). Other areas of peak activation 720 

decreases in the young were the bilateral fusiform and lingual gyri, bilateral inferior/middle 721 

temporal lobe, and bilateral inferior frontal triangularis as well as the middle frontal gyrus. Peak 722 

decreases were observed for the old in the vast regions of the bilateral putamen, superior 723 

temporal pole, supplementary motor area, insula, rolandic operculum, and orbital inferior frontal 724 

gyrus, whereas peak increases in activation were observed in the precuneus, midcingulate, 725 

primarily left cerebellum 4-5, and right anterior cingulate. For the VOCAB domain, there were 726 

large peak increases in activation for the young age bracket along the midline from the medial 727 

superior frontal to the posterior cingulate cortex and bilateral along the pre- and postcentral gyri. 728 

The old age bracket also displayed peak activation increases in a portion of the midcingulate in 729 

addition to the bilateral inferior/medial temporal cortex and fusiform, the left superior temporal 730 

cortex, the right cerebellum 4-6, and primarily left anterior cingulate. Peak decreases in 731 

activation were mainly found for the middle age bracket and extended through large portions of 732 

the bilateral cuneus, precuneus, calcarine, lingual gyrus, and posterior cingulate. Decreases in the 733 

precuneus were also observed for the young age bracket. While several regions maintained the 734 

same sign of peak change, only differing in age bracket, a few stood out for flipping sign 735 

between domains. For instance, whereas the bilateral vermis 4-5, posterior portion of the right 736 

anterior cingulate, and the left middle frontal gyrus all displayed peak decreases in activation for 737 

MEM in the old, they displayed peak increases in activation in the old for SPEED. In addition, 738 

posterior regions belonging to the bilateral middle occipital lobe, cuneus, and angular gyri that 739 

displayed peak increases in activation in the young age bracket for the FLUID domain instead 740 

displayed peak decreases in activation for the SPEED domain for the same age bracket.  741 



 

 31 

------------ 742 

Fig. 5 here 743 

------------ 744 

 745 

  746 

3.4.3. Stability of longitudinal change across domains  747 

As a final analysis, we wished to measure the stability of longitudinal change across domains in 748 

each age bracket, defined as voxels expressing at least one sign change (positive-negative or 749 

negative-positive) in each of the four domains (see Figure 6 for a display of these regions; 750 

colored regions display fluctuations whereas white regions display constant sign change in at 751 

least one domain). As can be observed from the figure, all age brackets contained regions 752 

expressing change of a constant sign, in either the negative or positive direction, at least once in 753 

all four cognitive domains. In terms of regions of sign fluctuations, both the young and middle 754 

age bracket displayed change fluctuations in slightly left-lateralized regions such as the caudate, 755 

putamen, rolandic operculum, insula, and superior temporal pole. The young age bracket 756 

displayed further fluctuations in anterior regions including the anterior and midcingulate whereas 757 

the middle age bracket displayed sign fluctuations in regions including the precuneus and 758 

posterior cingulate. However, perhaps the most striking finding occurred in the old age bracket, 759 

where only few regions displayed sign fluctuations present in all four domains; that is,  the 760 

greatest stability in direction of change was witnessed in the old age bracket.  Among those 761 

regions expression change were the right cerebellum 4-5, right postcentral gyrus, bilateral medial 762 

cingulate and precuneus, and left thalamus. 763 

 764 

------------ 765 
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Fig. 6 here 766 

------------ 767 

 768 

 769 

Discussion 770 

 771 

The aim of the present study was to quantify and compare cross-sectional approximations 772 

to longitudinal measurements of change across the lifespan and to further probe characteristics of 773 

this change in time (i.e., age) and space (i.e., ROI regions) specifically in longitudinal 774 

measurements. To this end, we tested participants in-scanner on a battery of cognitive tasks at 775 

two time points and used both behavioral performance and neural voxel activations to quantify 776 

continuous change across the lifespan.  In a preliminary comparison of voxel-averaged neural 777 

change curves between cross-sectional and longitudinal measurements, we showed that change 778 

curves did not greatly differ, in neither shape nor magnitude, across domains. However, this was 779 

simply performed to gain a first impression of our data, as coarse whole brain voxel-averaged 780 

change is not typically considered, possessing dubious ecological validity and being potentially 781 

uninformative in washing out nuanced effects. When we computed age-weighted ROI activation 782 

maps, region-specific change curves, instead, showed varying similarity between the two 783 

measurements. A further division of each curve into age brackets and comparison between 784 

measurements revealed areas displaying high dissimilarity. We further identified regions of 785 

maximum positive and negative change for each domain and age bracket in longitudinal 786 

measurements only, and were interested in the topography of when peak changes occurred across 787 

the lifespan. 788 

 The majority of what we know concerning age-related neural and cognitive changes 789 

comes from cross-sectional studies, despite limitations of potential cohort effects confounding 790 
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true age-specific changes. Cross-sectional comparisons of different ages have generally shown 791 

negative associations between age and performance on several cognitive abilities (Salthouse, 792 

2009). However, longitudinal evidence has shown a different pattern of change, with sustained or 793 

even increases in performance into later life (Salthouse, 2014b; Schaie & Willis, 2010; Ronnlund 794 

et al., 2005). Our current results comparing cross-sectional to longitudinal change reflects these 795 

discrepancies; whereas cross-sectional approximations of change mainly displayed performance 796 

declines across the lifespan, except for the vocabulary domain, longitudinal measurements 797 

displayed periods of stable increases in performance across the lifespan. The notable exception 798 

was the processing speed domain, for which declines were observed beginning at around 35 799 

years of age and the steepness of decline increasing with age. This latter finding has also been 800 

observed in a recent longitudinal study on midlife cognitive changes (Hughes et al., 2018).  801 

In terms of age-related neural changes, one of the most reported cross-sectional findings 802 

is activation increases in frontal brain regions, which has often been interpreted as a 803 

compensatory response to counteract neurocognitive decline (Drag & Bieliauskas, 2010; Davis et 804 

al., 2008). Interestingly, when comparing age-bracketed segments of the change curves between 805 

cross-sectional and longitudinal measurements, we observed that the maximum differences for 806 

all domains were expressed in predominantly left-lateralized frontal regions among young and 807 

middle age brackets. In the old age bracket, maximum differences were observed in more 808 

posterior regions including the right occipital cortex, lingual gyrus, and bilateral cerebellum. 809 

When looking at maximum integrated change by age bracket in the longitudinal measurements, 810 

we further see that negative changes, or activation declines, were predominantly present in 811 

inferior, middle, and superior frontal regions across all age brackets. Conversely, maximum 812 

integrated positive change showed a more variable pattern across age brackets and domains, with 813 
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the vocabulary domain showing the highest stability across all age brackets; importantly, 814 

maximum negative change occurred in frontal regions such as the inferior/middle frontal gyrus 815 

whereas maximum positive change occurred in posterior regions such as the inferior/middle 816 

occipital lobe. This latter finding is particularly notable as vocabulary is a cognitive ability that 817 

shows improvement with age (Salthouse & Davis, 2006; see Hartshorne & Germine, 2015), 818 

additionally observed in our own data. While we cannot infer that improved behavioral 819 

performance is linked to neural changes in the regions listed above, recruitment of frontal 820 

resources to maintain or increase behavioral outcomes may not strictly apply to all cognitive 821 

domains and should be confirmed in longitudinal data. However, our findings more generally 822 

suggest that age-related increases in frontal regions reported in cross-sectional analyses may not 823 

adequately reflect true longitudinal neural changes. Even in terms of absolute change values 824 

between age brackets, the old age bracket expressed the lowest positive change values across all 825 

four domains, eliminating the possibility that frontal regions, while still overall higher for the old 826 

age bracket, were simply excluded by our threshold. Some work has highlighted the importance 827 

of characterizing the magnitude of BOLD response in terms of relative activation change when 828 

comparing younger to older adults, showing that while some regions may be lower for older 829 

adults, the summation of BOLD response across all regions and trials does not differ between 830 

groups (Buckner et al., 2000). Our findings suggest that frontal regions do not display 831 

overrecruitment, neither in relative change between regions within the old age bracket nor in 832 

absolute change between age brackets. While ample cross-sectional evidence exists supporting 833 

increased frontal recruitment with age across different cognitive domains (Cabeza, 2002; Milham 834 

et al., 2002; Turner & Spreng, 2012; Hakun et al., 2015a), some longitudinal evidence suggests 835 

under-recruitment of frontal regions, specifically on a semantic judgment task (Nyberg et al., 836 
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2010). Other longitudinal PET findings have reported both reductions and increases in cerebral 837 

blood flow across prefrontal cortex regions when performing verbal and figure recognition tasks 838 

(Beason-Held et al., 2008a; Beason-Held et al., 2008b). However, longitudinal findings are 839 

equivocal, with yet other evidence echoing claims of frontal over-recruitment, particularly when 840 

assessing executive tasks (Hakun et al., 2015b). Furthermore, one crucial aspect that is not 841 

covered by our analysis is how changes in performance relate to age-related increases or declines 842 

in activation. For instance, a longitudinal study by Vidal-Piñeiro and colleagues (2019) found 843 

that low levels of frontal activation during an episodic memory task was associated with lower 844 

memory performance in older adults over an 8-year period. More longitudinal work is needed to 845 

assess the role of frontal cortical regions in the aging process. 846 

In addition to our findings suggesting lack of support for age-related frontal increases as 847 

measured by maximum integrated change, analysis of peak change across age brackets again 848 

revealed more posterior regions displaying peak increases in activation in the old age bracket. In 849 

all four domains, portions of the cerebellum and the vermis displayed peak positive changes in 850 

the old age bracket. A cross-sectional review by Bernard and Seidler (2014) reported task-related 851 

increases in cerebellar activation with age, particularly in motor learning and execution tasks, 852 

arguing that cerebellar morphology is comparable if not better than the prefrontal cortex at 853 

predicting performance. For the memory domain, one of the few areas displaying peak increases 854 

in activation among the old age bracket was the bilateral hippocampus. Both cross-sectional and 855 

longitudinal work has found age-related hyperactivation in the hippocampus, which has been 856 

linked to factors such as declines in memory performance and amyloid and tau accumulation 857 

(Leal et al., 2017; Huijbers et al., 2019). Peak decreases in activation were otherwise observed in 858 

the old age bracket, primarily bilaterally along the inferior-superior axis of the frontal cortex, and 859 
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posteriorly in the medial occipital cortex and calcarine. However, the majority of both peak 860 

increases and decreases in activation occurred in the middle age bracket, where peak increases in 861 

activation were found in slightly left-laterialized regions of the medial/superior temporal lobe 862 

and cerebellum crus 4-5 and peak decreases in activation found in the bilateral cerebellum crus 6, 863 

insula, and right superior temporal pole. Limited longitudinal evidence has shown that memory 864 

performance during midlife can predict an individual’s memory-related BOLD response 15-20 865 

years later (Pudas et al., 2014) and that the difference between an individual’s chronological age 866 

and biological age, as predicted from machine-learning models, is associated with cognitive 867 

function in early life and adulthood (Elliott et al., 2019). These studies highlight the need that 868 

greater focus be placed on this underrepresented interval in the lifespan.  869 

One additional region that stood out in both analyses of maximum longitudinal change 870 

and the distribution of peak change across the lifespan was the anterior cingulate cortex (ACC). 871 

In both the memory and processing speed domains, the ACC expressed maximum increases in 872 

activation in the young and middle age brackets, but maximum increases were not present in the 873 

old age bracket for memory and to a reduced extent for processing speed. However, when 874 

looking at when peak positive change occurs across the lifespan, we see that positive peaks were 875 

in fact observed for the old age bracket in the right ACC for the speed domain and in the left 876 

ACC for the vocabulary domain.  Prior cross-sectional and longitudinal work have both reported 877 

reduced metabolic uptake with age (Pardo et al., 2020; Pardo et al., 2007), and that this reduction 878 

correlates with cognitive decline (Pardo et al., 2007). These findings encourage further work on 879 

how task-related activation changes in the ACC relates to the aging.  880 

Finally, we looked at regions that expressed fluctuation in the direction of change in each 881 

age bracket. The most striking finding was that the old age bracket displayed the least sign 882 
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fluctuation in change across all four domains. This was an interesting finding, as we might have 883 

expected greater instability given that aging is typically related to increased intraindividual and 884 

interindividual variability in neural response due to a broad range of factors (see Caspers et al., 885 

2014) reduced neural selectivity for stimuli (for a review, see Koen & Rugg, 2019). However, it 886 

should be highlighted that we measured stability as fluctuation in the directionality of change 887 

across all four domains. It could well be the case that certain domains might express change in a 888 

specific direction in old age whereas others do not, a possibility precluded by the current 889 

analysis.  890 

One potential criticism to the current study is the lack of statistical inference of the 891 

regions involved in the processing of each domain. We did not restrict comparisons between 892 

cross-sectional and longitudinal change to voxels deemed significant by univariate analysis, 893 

instead choosing to focus on activation change in a continuous manner across participants and 894 

treating all voxels as reflecting true signal. We do believe though that application of the age-895 

weighted kernel, while by no means a rigorous statistical test, is sufficient at smoothing over 896 

nonuniform change that could have arisen due to statistical noise. We have no reason to believe 897 

that certain voxels were subject to systematic biases, given that spatial smoothing was also 898 

performed in pre-processing and that participants with high motion artifact were excluded from 899 

the analysis. However, in addition to our modest sample size, we do acknowledge that the 900 

regions we report in each domain may not be “selective” to that domain with the inferential rigor 901 

of a formal statistical test. In a future application, it might be profitable to refine threshold setting 902 

across domains or measure covariance patterns of change to be able to more adequately assess 903 

unique versus overlapping change across domains.  904 
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Another future direction will be the integration of other factors associated with cognitive 905 

and neural changes across the lifespan. One important factor, which has formed the crux of age-906 

related changes in the majority of longitudinal studies and reviews, has been age-related 907 

cerebral-volume changes (for a review, see Hedman et al., 2012). For instance, some studies 908 

have linked age-related structural brain reductions to increased functional activation (Hakun et 909 

al., 2015b; Fjell et al., 2016). Additionally, we could focus on a proper integration of brain-910 

cognition relations, beyond simple over-recruitment of frontal activation, for better clarification 911 

whether potential over-recruitment is linked to successful compensatory processes (e.g., Vallesi 912 

et al., 2011), as manifested by maintained or increased age-related behavioral outcomes, or 913 

inefficiency of processing as the brain attempts to cope with negative age-related change. 914 
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 1095 

Figure legends 1096 

 1097 

Figure 1. Schematic of the generation of weights defined by the Gaussian kernel (σ = 4) 1098 

centered at a target age of 35 years old. Dashed Gaussian demonstrates the kernel sliding across 1099 

and centered on each year of age present in the dataset. In the equation of brain activation at 1100 

target age (t), w(ti, t) is the weight (w) assigned to a participant’s age (ti) given the target age (t) 1101 

and i is the participant’s domain activation (beta) map. In the weighing of each map i, the voxel 1102 

index is preserved. The example brains above demonstrate the resulting output, which is 1103 

weighted activation maps at each year of life in the sample, for each of the four domains. 1104 

 1105 
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Figure 2. 5-year change curves of baseline approximations and longitudinal measurements. 1106 

Left panel: Neural change curves. The values reflect the age-weighted differences between the 1107 

activation map at time (t) subtracted from the map at time (t+5)  averaged across all voxels (y-1108 

axis) plotted separately for each domain. Right panel: Behavioral performance change curves. 1109 

The values reflect the age-weighted differences in behavioral performance at time (t) subtracted 1110 

from performance at time (t+5) (y-axis) plotted separately for each domain. 1111 

This 5-year window of difference, expressed as a single value, is plotted for the age at baseline 1112 

(x-axis). Baseline approximations (green) and real longitudinal change measurements (pink) are 1113 

plotted together to visually appreciate similarities versus discrepancies.  1114 

 1115 

Figure 3. Axial brain slices expressing areas of greatest similarity and difference between 1116 

baseline approximations and longitudinal measurements of change for each domain. We 1117 

selected an age bracket to represent per domain. For each domain map, we display the regions 1118 

for a given age bracket (indicated in the graph title) displaying both the greatest difference 1119 

between curves (MAE >97.5 percentile; depicted in blue) and the greatest similarity (MAE <2.5 1120 

percentile; depicted in yellow). The number next to each brain slice indicates the z-coordinate. 1121 

To the top right, the two smaller brain slices represent the two ROIs displaying the greatest 1122 

similarity (yellow) and difference (blue) between curves, which are represented in the graphs 1123 

below. Graphs depict the change in activation (y-axis) for each 5-year window (plotted on the x-1124 

axis at baseline age). The shaded blue region denotes the age bracket segment on which MAE 1125 

was calculated. NOTE: Slices are mirror-flopped where the right hemisphere is expressed on the 1126 

left side.  1127 

 1128 
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Figure 4.  Areas of maximum change in longitudinal measurements. The brain regions 1129 

displaying the greatest integrated positive change at the >97.5 (yellow) and the greatest 1130 

integrated negative change (blue) are presented for each age bracket in each domain. The color 1131 

bars to the right of each image reflect the scale of change for each domain. The extreme ends of 1132 

the scale were chosen based on the maximum and minimum change values observed across all 1133 

age brackets; these values were always greatest for the young age bracket. The number next to 1134 

each brain slice indicates the z-coordinate. NOTE: Slices are mirror-flopped where the right 1135 

hemisphere is expressed on the left side.  1136 

 1137 

Figure 5. Domain maps depicting the age bracket in which peak negative or positive changes 1138 

occurred across the entire lifespan change curve. For each ROI in each domain, we located the 1139 

overall peak change value, irrespective of sign, across the entire change curve (essentially the 1140 

maximum absolute value). The center voxel of each ROI was then color-coded depending on in 1141 

which age bracket the peak was located and whether it was a positive or negative peak (see color 1142 

bar to the right of the figure). The number next to each brain slice indicates the z-coordinate. 1143 

NOTE: Slices are mirror-flopped where the right hemisphere is expressed on the left side.  1144 

Y= Young; M= Middle Age; O= Old  1145 

 1146 

Figure 6. Maps of each age bracket depicting regions of sign change present in all four 1147 

domains. For each domain, we indexed in which ROIs the change curve contained at least one 1148 

zero-crossing, denoting a sign change (i.e., positive-negative or negative-positive). We then 1149 

selected those ROIs that displayed overlap in sign change across all four domains. These voxels 1150 

are mapped separately for the young (red), middle (green), and old (blue) age brackets. White 1151 
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areas depict regions in which the change curve maintained a constant sign, either positive or 1152 

negative, in at least one domain. The number next to each brain slice indicates the z-coordinate. 1153 

NOTE: Slices are mirror-flopped where the right hemisphere is expressed on the left side.  1154 

 1155 

 1156 

Table legends 1157 

Table 1. Participant demographics  divided by age bracket. Age, NART, and Education 1158 

represent values at baseline. Counts (N) are given for the total number of participants in each 1159 

domain, along with a division by sex. 1160 

Table 2. AAL regions displaying the greatest difference between baseline approximations and 1161 

longitudinal measurements. The three regions per age bracket and domain displaying the 1162 

greatest difference, via MAE metric at the >97.5 percentile, are presented. Coordinates refer to 1163 

the center voxel of the ROI. As MAE is a negative-oriented error metric, higher values indicate 1164 

higher differences. The “N.ROIs” column represents the number of ROIs in the >97.5 percentile 1165 

subset (601 ROIs per comparison) for which the center voxel is located in the AAL region listed. 1166 

For instance, in the case of the first row entry, the left dorsolateral Superior Frontal Gyrus 1167 

displayed the greatest difference at XYZ location (-24, 57, 3), but this region was among the top 1168 

601 ROIs displaying the greatest differences for 57 out of the 601 ROIs. 1169 

Hem =  Hemisphere; L= Left; R= Right; DL= dorsolateral; Orb= orbital; Med= medial. 1170 

 1171 

Table 3. ROIs denoted by AAL area displaying the greatest similarity between baseline 1172 

approximations and longitudinal measurements. The three regions per age bracket and domain 1173 

displaying the greatest similarity, via MAE metric at the <2.5 percentile, are presented. 1174 
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Coordinates refer to the center voxel of the ROI. As MAE is a negative-oriented error metric, 1175 

lower values indicate higher similarity. The “N.ROIs” column represents the number of ROIs in 1176 

the <2.5 percentile subset (601 ROIs per comparison) for which the center voxel is located in the 1177 

AAL region listed. For instance, in the case of the first row entry, the left puteman displayed the 1178 

greatest similarity at XYZ location (-27, 3, 0), but this region was among the top 601 ROIs 1179 

displaying the greatest differences for 109 out of the 601 ROIs. 1180 

Hem =  Hemisphere; L= Left; R= Right; DL= dorsolateral; Med= medial; Ant= Anterior; Mid= 1181 

Middle. 1182 

 1183 

Table 4. ROIs denoted by AAL area expressing the greatest integrated positive change for 1184 

longitudinal measurements. The three regions per age bracket and domain displaying the 1185 

greatest integrated positive change at the >97.5 percentile, are presented. Integrated change was 1186 

calculated via trapezoidal summation in the segmented age bracket. Coordinates refer to the 1187 

center voxel of the ROI. Higher values signify greater positive change. The “N.ROIs” column 1188 

represents the number of ROIs in the >97.5 percentile subset (601 ROIs per comparison) for 1189 

which the center voxel is located in the AAL region listed. For instance, in the case of the first 1190 

row entry, the left anterior cingulate gyrus displayed the greatest positive change at XYZ 1191 

location (-3, 30, -6), but this region was among the top 601 ROIs displaying the greatest positive 1192 

change for 71 out of the 601 ROIs. 1193 

Hem =  Hemisphere; L= Left; R= Right; DL= dorsolateral; Med= medial; Ant= Anterior; Med= 1194 

Medial. 1195 

 1196 
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Table 5. ROIs denoted by AAL area expressing the greatest integrated negative change for 1197 

longitudinal measurements. The three regions per age bracket and domain displaying the 1198 

greatest integrated negative change at the <2.5 percentile, are presented. Integrated change was 1199 

calculated via trapezoidal summation in the segmented age bracket. Coordinates refer to the 1200 

center voxel of the ROI. Lower values signify greater negative change. The “N.ROIs” column 1201 

represents the number of ROIs in the <2.5 percentile subset (601 ROIs per comparison) for 1202 

which the center voxel is located in the AAL region listed. For instance, in the case of the first 1203 

row entry, the left dorsolateral superior frontal gyrus displayed the greatest negative change at 1204 

XYZ location (-27, 57, 3), but this region was among the top 601 ROIs displaying the greatest 1205 

negative change for 69 out of the 601 ROIs. 1206 

Hem =  Hemisphere; L= Left; R= Right; DL= dorsolateral; Med= medial; Ant= Anterior; Med= 1207 

Medial. 1208 

 1209 

 1210 
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 1 

Age Bracket Domain N Sex Age  NART  Education  

   Male Female Mean SD Mean SD Mean SD 

20-40 years MEM 40 16 24 30.83 5.75 112.94 7.81 16.33 2.26 

 FLUID 47 18 29 31.19 5.55 112.07 7.73 16.17 2.51 

 SPEED 50 18 32 30.52 5.49 112.73 7.68 16.04 2.47 

 VOCAB 49 18 31 30.7 5.4 112.71 7.76 16.04 2.5 

41-60 years MEM 40 18 22 50.58 5.69 119.42 7.36 16.15 2.34 

 FLUID 42 19 23 50.48 5.57 117.94 7.83 15.95 2.25 

 SPEED 49 24 25 49.9 5.71 118.93 7.78 16.02 2.33 

 VOCAB 46 22 24 49.57 5.66 118.71 7.93 15.98 2.31 

61-75 years MEM 47 25 22 68.11 5.21 119.4 7.43 16.51 2.52 

 FLUID 59 31 28 68.71 4.89 119.57 7.47 16.56 2.62 

 SPEED 60 32 28 67.97 5.06 119.69 7.39 16.56 2.6 

 VOCAB 57 31 26 68.23 5.08 119.7 7.06 16.47 2.67 

Table 1. 
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Domain Age 

Group 

Coordinates AAL region Hem MAE N. 

ROIs 

  X Y Z     

MEM Young -24 57 3 Superior frontal gyrus (DL) L 35.65 57 

  -27 54 3 Middle frontal gyrus L 31.06 132 

  -30 54 -3 Superior frontal gyrus (ORB) L 30.96 2 

 Middle -42 -63 -24 Cerebellum crus 1 L 29.46 16 

  -21 63 12 Superior frontal gyrus (DL) L 28.64 48 

  -42 -57 -24 Cerebellum 6 L 28.41 56 

 Old 30 -84 -18 Lingual gyrus R 39.74 94 

  36 -84 -15 Inferior occipital lobe  R 37.86 56 

  27 -84 -18 Cerebellum crus 1 R 37.58 47 

FLUID Young -21 63 9 Superior frontal gyrus (DL) L 28.22 61 

  -9 63 12 Superior frontal gyrus (Med) L 21.89 157 

  -27 57 12 Middle frontal gyrus L 19.84 64 

 Middle -9 45 -9 Superior frontal gyrus (MedOrb) L 22.64 10 

  -6 33 -6 Cingulate gyrus (Ant) L 21.20 73 

  6 39 -9 Superior frontal gyrus (MedOrb) R 20.71 9 

 Old 39 -69 -24 Cerebellum crus 1 R 20.15 63 

  -42 -63 -24 Cerebellum crus 1 L 18.64 16 

  36 -72 -21 Cerebellum 6 R 17.19 111 

SPEED Young -45 45 -9 Inferior frontal gyrus (ORB) L 21.61 30 

  -42 45 -6 Middle frontal gyrus (Orb) L 20.05 18 

  36 54 6 Middle frontal gyrus R 18.70 105 

 Middle -30 54 -3 Superior frontal gyrus (Orb) L 18.49 2 

  -33 54 -3 Middle frontal gyrus (Orb) L 17.99 18 

  18 -93 -12 Lingual gyrus R 16.02 49 
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 Old 24 36 -21 Middle frontal gyrus (Orb) R 19.17 8 

  36 -90 0 Inferior occipital lobe R 18.75 52 

  36 -90 3 Middle occipital lobe R 18.66 42 

VOCAB Young -39 51 -6 Middle frontal gyrus (Orb) L 33.88 18 

  -30 54 -3 Superior frontal gyrus (Orb) L 33.36 2 

  -33 54 0 Superior frontal gyrus (DL) L 32.88 40 

 Middle 30 -90 9 Middle occipital lobe R 23.33 88 

  15 -96 3 Calcarine fissure + surrounding cortex (V1) R 21.23 23 

  39 -69 -24 Cerebellum crus 1 R 20.26 51 

 Old 36 -90 3 Middle occipital lobe R 32.27 103 

  36 -90 0 Inferior occipital lobe R 30.82 92 

  39 -69 -24 Inferior occipital lobe R 24.29 27 

Table 2. 
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Domain Age 

Group 

Coordinates AAL region Hem MAE N. 

ROIs 

  X Y Z     

MEM Young -27 3 0 Putamen L 0.42 109 

  15 -6 66 Superior frontal gyrus (DL) R 0.47 27 

  51 -39 54 Inferior parietal gyrus R 0.49 43 

 Middle 15 -84 39 Cuneus R 1.28 26 

  42 -51 57 Superior parietal gyrus R 1.58 17 

  -6 -69 48 Precuneus L 1.65 72 

 Old 63 -33 24 Superior temporal gyrus R 0.22 92 

  60 -33 27 Supramarginal gyrus R 0.28 80 

  42 21 48 Middle frontal gyrus R 0.39 41 

FLUID Young -30 12 -9 Undefined L 0.37 111 

  48 -75 30 Middle occipital lobe R 0.38 31 

  -12 6 63 Supplementary motor area L 0.38 11 

 Middle 36 -36 54 Postcentral Gyrus R 0.21 14 

  39 -66 42 Angular Gyrus R 0.23 105 

  30 9 9 Putamen R 0.27 14 

 Old 33 -12 -27 Parahippocampal R 0.33 28 

  21 24 60 Superior frontal gyrus (DL) R 0.39 51 

  36 -15 -21 Hippocampus R 0.42 18 

SPEED Young 6 -60 36 Precuneus R 0.29 96 

  39 21 -6 Insula R 0.36 28 

  -18 -33 6 Undefined L 0.37 24 

 Middle 12 15 60 Supplementary motor area R 0.24 35 

  66 -27 15 Superior temporal gyrus R 0.28 56 

  30 9 51 Middle frontal gyrus R 0.28 69 
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 Old -57 -18 45 Inferior parietal gyrus L 0.23 5 

  -3 12 36 Cingulate gyrus (Mid) L 0.26 26 

  -24 12 51 Middle frontal gyrus L 0.32 44 

VOCAB Young -6 -3 -9 Undefined L 0.34 138 

  -15 3 15 Caudate L 0.52 59 

  15 0 18 Caudate R 0.95 34 

 Middle -6 18 30 Cingulate gyrus (Ant) L 0.34 36 

  3 18 27 Cingulate gyrus (Ant) R 0.37 22 

  -45 6 30 Inferior frontal gyrus (opercular) L 0.44 60 

 Old 18 36 48 Superior frontal gyrus (DL) R 0.22 49 

  -6 30 48 Superior frontal gyrus (Med) L 0.27 32 

  9 33 51 Superior frontal gyrus (Med) R 0.27 42 

Table 3. 
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Domain Age 

Group 

Coordinates AAL region Hem Integral N. 

ROIs 

  X Y Z     

MEM Young -3 30 -6 Cingulate gyrus (Ant) L 220.34 71 

  3 33 -6 Cingulate gyrus (Ant) R 213.26 35 

  9 36 -9 Superior frontal gyrus (MedOrb) R 212.14 9 

 Middle -3 42 -6 Superior frontal gyrus (MedOrb) L 142.20 10 

  -9 48 -3 Cingulate gyrus (Ant) L 141.01 66 

  3 33 -6 Cingulate gyrus (Ant) R 136.41 32 

 Old 15 -15 -24 Undefined R 132.92 302 

  15 -9 -15 Hippocampus  R 99.99 9 

  -15 -6 -12 Hippocampus  L 93.77 41 

FLUID Young -21 63 9 Superior frontal gyrus (DL) L 534.51 49 

  -9 63 12 Superior frontal gyrus (Med) L 388.11 85 

  -27 57 12 Middle frontal gyrus (MedOrb) L 369.12 57 

 Middle -21 63 9 Superior frontal gyrus (DL) L 340.66 41 

  -9 63 12 Superior frontal gyrus (Med) L 282.29 91 

  15 -93 -12 Lingual gyrus R 241.39 30 

 Old 24 -93 -12 Lingual gyrus R 254.76 18 

  27 -90 -9 Inferior occipital lobe  R 221.99 23 

  15 63 15 Superior frontal gyrus (Med) R 188.51 46 

SPEED Young -6 45 -9 Superior frontal gyrus (MedOrb) L 265.70 10 

  -6 39 -6 Cingulate gyrus (Ant) L 236.82 105 

  6 39 -9 Superior frontal gyrus (MedOrb) R 223.88 8 

 Middle -6 45 -6 Superior frontal gyrus (MedOrb) L 204.89 10 

  18 -96 -3 Calcarine fissure + surrounding cortex (V1) R 201.23 31 

  -9 48 -3 Cingulate gyrus (Ant) L 194.51 97 
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 Old 24 -42 -33 Undefined  R 117.47 145 

  18 -96 -3 Calcarine fissure + surrounding cortex (V1) R 111.69 14 

  -6 51 6 Superior frontal gyrus (Med) L 105.11 39 

VOCAB Young 30 -90 9 Middle occipital lobe R 375.25 88 

  15 -96 3 Calcarine fissure + surrounding cortex (V1) L 355.38 31 

  33 -90 0 Inferior occipital lobe R 336.67 85 

 Middle 30 -90 9 Middle occipital lobe R 349.44 88 

  15 -96 3 Calcarine fissure + surrounding cortex (V1) R 333.87 31 

  33 -90 0 Inferior occipital lobe R 310.89 81 

 Old 15 -96 3 Calcarine fissure + surrounding cortex (V1) R 252.60 30 

  30 -90 9 Middle occipital lobe R 242.30 71 

  33 -90 0 Inferior occipital lobe R 205.04 79 

 Table 4. 
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Domain Age 

Group 

Coordinates AAL region Hem Integral N. 

ROIs 

  X Y Z     

MEM Young -24 57 3 Superior frontal gyrus (DL) L -580.56 69 

  -27 54 3 Middle frontal gyrus  L -523.74 179 

  -30 54 -3 Superior frontal gyrus (Orb) L -516.44 2 

 Middle -30 54 -3 Superior frontal gyrus (Orb) L -445.79 2 

  -33 54 -3 Middle frontal gyrus (Orb) L -405.77 18 

  -30 54 3 Middle frontal gyrus L -379.80 115 

 Old -51 15 36 Inferior frontal gyrus (opercular) L -294.61 30 

  -48 18 39 Middle frontal gyrus L -288.31 78 

  -51 12 39 Precentral gyrus L -269.83 23 

FLUID Young 36 9 60 Middle frontal gyrus R -105.61 269 

  51 12 42 Precentral gyrus R -82.72 77 

  51 15 39 Inferior frontal gyrus (opercular) R -78.94 110 

 Middle 36 9 60 Middle frontal gyrus R -100.77 266 

  51 12 42 Precentral gyrus R -78.12 83 

  51 15 39 Inferior frontal gyrus (opercular) R -74.91 104 

 Old 45 15 48 Middle frontal gyrus R -72.82 277 

  39 -21 -27 Fusiform R -64.45 18 

  51 18 39 Inferior frontal gyrus (opercular) R -63.05 107 

SPEED Young -42 45 -9 Inferior frontal gyrus (Orb) L -471.46 38 

  -42 45 -6 Middle frontal gyrus (Orb) L -452.86 18 

  36 51 6 Middle frontal gyrus R -400.16 176 

 Middle 45 45 6 Middle frontal gyrus R -317.70 172 

  42 45 0 Inferior frontal gyrus (triangular)  R -292.00 236 

  42 45 -3 Inferior frontal gyrus (Orb) R -278.74 53 
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 Old -45 45 -9 Inferior frontal gyrus (Orb) L -297.48 53 

  -48 39 0 Inferior frontal gyrus (triangular)  L -274.64 47 

  45 45 6 Middle frontal gyrus R -222.84 187 

VOCAB Young -42 45 -9 Inferior frontal gyrus (Orb) L -445.70 28 

  -39 48 -6 Middle frontal gyrus (Orb) L -424.14 18 

  -42 51 3 Middle frontal gyrus L -346.89 148 

 Middle 36 51 6 Middle frontal gyrus R -324.85 185 

  -42 51 6 Middle frontal gyrus L -251.18 178 

  -42 48 6 Inferior frontal gyrus (triangular)  L -243.30 44 

 Old -42 45 -9 Inferior frontal gyrus (Orb) L -320.47 40 

  -42 45 -6 Middle frontal gyrus (Orb) L -286.34 18 

  -48 42 0 Inferior frontal gyrus (triangular)  L -224.47 187 

Table 5. 

 


